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Joint analysis of multivariate longitudinal and competing risks data
Jaber Kazempoor

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: kazempoorjaber@gmail.com

Supervisor:
Arezou Habibirad

These models are applicable in settings where subjects are followed over time, usually to
monitor the progress of a disease or medical condition. That progression is typically evaluated
via repeated measurements of a biomarker or biomarkers pertinent to the disease, and it may
be of clinical interest to determine the effect of such a biomarker on the time to an event of
interest (e.g., death or intervention). Since measurements of the biomarkers are taken from the
subject under study, they are deemed endogenous; that is, their value at any given time point
is dependent upon/may be altered by the occurrence of the event prior to that time point. They
are also usually measured with error, and their complete path is unknown. Their values are only
known for the specific time points at which they are measured.

Longitudinal data, Competing risk, Prediction.
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An introduction to the empirical likelihood inference

Aghil Alaee

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: aghil.alaee@mail.um.ac.ir

Supervisor :

Vahid Fakoor, Mohammad Arashi

Empirical likelihood is a nonparametric method of inference based on a data driven likelihood
ratio function. Like the bootstrap and jackknife, empirical likelihood inference does not require
us to specify a family of distributions for the data. Like parametric likelihood methods,
empirical likelihood makes an automatic determination of the shape of confidence regions.

The method of empirical likelihood, introduced by Owen (1988), is a technique which has

many parallels with the bootstrap. Both are based on nonparametric likelihood; while the
bootstrap assigns % probability mass to each observation, the empirical likelihood method

““‘chooses’’ probability mass under linear constraints. The former uses simulations, while the
latter uses numerical calculation to obtain confidence intervals. These confidence intervals
calculated by the two methods share similar properties. In fact, as Hall (1992) puts it, empirical
likelithood provides confidence regions ‘‘that have coverage accuracy properties at least
comparable with those of bootstrap confidence regions.’” Efron and Tibshirani (1993), provide
a nice discussion on the two methods see also [Hall and La Scala (1990), Chen 1994a],
compares the power of the two methods in the context of mean parameter tests in terms of
higher order asymptotic. Empirical likelihood has been studied extensively in the literature
because of its generality and effectiveness. It has many applications: smooth function models,
regression models [Owen (1991), Chen (1993, 1994a, b)], generalized linear models [Kolaczyk
(1994)], quantiles [Chen and Hall (1993)], biased sample models [Qin (1993)], general

estimating equations (GEE), [Qin and Lawless (1994), to name a few.

Experimental probability, Wilkes theorem.
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Allocation of redundancies in systems: A general dependency-base
framework

Hamideh Jeddi

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: ha_je57@mail.um.ac.ir

Supervisor:

Mahdi Doostparast

Manufacturers and consumers prefer reliable products, or systems in general, since they need

to assure that systems work satisfactory for given mission times. The redundancy allocation to
original system components is a common technique to improve reliabilities. But, allocation of
redundant is not an easy task and must be considered properly with respect to environmental
working conditions and possible restrictions such as cost, volume and weight. Therefore, the
problem of finding optimal allocations is important and studied extensively in literature. The
existing studies usually assume restrictive conditions such as stochastically independent
component and spare lifetimes. This article deals with this problem under a general setting in
which component and spare lifetimes can be dependent and heterogeneous. Two common
policies, called active and standby, are studied in details. Stochastic orders are implemented
for comparing various allocation policies. Findings of this article are derived under general
conditions and hold for arbitrary dependency structures among lifetimes. Illustrative examples
are also given.

Dependence, Redundancy, Reliability, Stochastic orders.
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A study on imperfect repair based on reduction of intensity (age)
Khatere Rajinia

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: kh.rajinia@mail.um.ac.ir

Supervisor:

Mostafa Razmkhah

Two classes of imperfect repair models are studied. In the first one, the imperfect repair is
modeled by reduction of failure intensity, and in the second class, the effect of imperfect repair
is expressed by reduction of age of a system. Toward this end, at the first step, the conditional
failure intensity before the first repair is assumed to be a continuous function of time. Then,
the repair effect is characterized by the change induced on the failure intensity after each
failure. The main goal of future research is to review and model the issue of imperfect repair
based on reduction of age in the line with various maintenance policies.

Failure intensity, Imperfect repair, Maintenance, Virtual age.
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On the contaminated exponential distribution:

A theoretical Bayesian approach for modeling positive dataset with
outliers

Kheirolah Okhli

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: kh.okhli@mail.um.ac.ir

Supervisor:

Mehdi Jabbari Nooghabi, David P.M. Scollnik

Abstract

Analysis of the insurance data has recently been achieved considerable attention for insurance
industries. This paper introduces the contaminated exponential (CE) distribution as an
alternative platform for analyzing positive dataset such as positive-valued insurance dataset
with some levels of outliers. The Bayesian approach for obtaining the parameter estimates is
presented. In order to check the performance of the proposed methodology, some simulation
studies by implementing the Gibbs sampling are conducted. Finally, four examples of actual
insurance claim data with various sample sizes have been analyzed to illustrate the superiority
of the CE distribution in analyzing data and identifying outliers.

Keywords:

T Outliers, Contaminated exponential distribution, Mixture model, Insurance and claims
data, Bayesian analysis, Gibbs sampler
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Empirical likelihood confidence intervals for Lorenz curve with
length-biased data

Mahdiyeh Vejdani

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: ias_2006_m@yahoo.com

Supervisor:
Abdolhamid Rezaei, Vahid Fakoor, Sara Jomhoori

The Lorenz curve (LC) is the most fundamental and remarkable tool for processing the size
distribution of the income and wealth. The LC method is applied as a means to describe
distributional consideration in economic analysis. On the other hand, the importance of biased
sampling problem has been well recognized in statistics and econometrics. In this paper, the
empirical likelihood (EL) procedure is proposed to make inference about the LC, in the length
biased setting. The limiting distribution of the EL-based log-likelihood ratio leads to a scaled
chi-square. This limiting distribution will be utilized to construct EL ratio confidence interval
for the LC. Another EL-based confidence interval will be proposed by using the influence
function method. Simulation studies are conducted to compare the performances of these EL-
based confidence intervals with their counterparts, in terms of coverage probability and average
length. Real data analysis is used to illustrate the theoretical results.

Lorenz curve, Empirical likelihood, Length-biased, Influence function, Confidence interval.
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On the properties of a bivariate lifetime distribution

Vahideh Mohtashami Borzadaran

PhD student of Statistics, Ferdowsi University of Mashhad
E-mail: v.mohtashami@mail.um.ac.ir

Supervisor:
Mohammad Amini and Jafar Ahmadi

A bivariate lifetime distribution is introduced and its dependency properties are studied.
Furthermore, some bivariate reliability properties such as bivariate hazard rate vector, bivariate
ageing intensity vector and the stress-strength parameter are calculated. In addition, the weak
hazard rate order and bivariate ageing intensity order are applied for comparing two vectors
from the proposed model.

Kendall’s tau, Spearman’s rho, Bivariate hazard rate vector, Bivariate ageing intensity vector,
Stress-strength parameter, Bivariate ageing intensity order, Weak hazard rate order.



